Lecture 4 : Product spaces and independence

STAT205 Lecturer: Jim Pitman Scribe: Lauren Deason <laurend@math.berkeley.edu>

4.1 Product spaces and Fubini’s Theorem

Definition 4.1 If (Q;, F;) are measurable spaces, i € I (index set), form [[, . For
simplicity, ; = §y.

[L Qi (write Q for this) is the space of all maps: I — Qy. Forw € [[,Q;, w = (w; :
i € 1,w; €€). Q is equipped with projections, X; : Q@ — Q;, X;(w) = w;.

[picture of square, €y on one side, 3 on other, point w in middle, maps under
projection to each side]

Definition 4.2 A product o-field on ) is that generated by the projections: F =
o((Xi € 1) | Fi € F).

FlXFZZ(Q|Q:LeFl/\QQEFQ)Ef:(XleFl)m(XZEFQ).

We now seek to construct the product measure. We start with the n = 2 case.
(Q,F) = (Q1,F1) x (Qa,F2). Suppose we have probability measures P; on (£;, F;),
i =1,2. Then there is a natural way to construct P = P; X P; (product measure) on

(2, F).
Key idea: Fl S fl, F2 c FQ, P(Fl X Fg) = Pl(Fl) X PQ(FQ)

Theorem 4.3 (Existence of product measure and Fubini theorem) : (nota-
tion w = (wy,ws)) There is a unique probability measure P on (Q1, Fy) X (Qa, F3)
such that for every non-negative product-measurable [measurable w.r.t. the product

o-field] function f:Qy x Q9 — [0, 00),
/ Flwn x ws)Pdw) = / [ Flwr, ws) Po(duwn) | Py(dwy) =
Q1 xQo 1951 Qo
/ |: f(wl,wQ)Pl(dwl)} PQ(dCdQ).
0, Loy
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Note that this really tells very explicitly what P is:
PA) = [ 1a(w)P() (¥
Q2
Fix we, look at Aws = {wq | (w1, ws) € A}.
/Pl(sz)Pz(dwz)

Look at the level of sets. f = 14. Look at formula (k). Look at the collection C of
all A C € x Q9 such that * makes sense, i.e.:

1. Aw, € F; for every wy € €)s.

2. wy — Pi(Aw) is measurable.
Observe:

1. C contains all A; x Ay (m-system, closed under intersection), and get P(A; X
Ag) = Pi(A1) Pa(Az)

2. C is a A-system.

Thus, C D 0(A; x As), which is the product of o-fields.
(Checking A-system uses monotone convergence theorem.)

We know that the order of integration was not relevant, because the other way gives us
a measure which agrees on rectangles (by commutativity of addition), and rectangles
generate (and we get a m-system out of them), so we can apply the 7m-A-theorem.

Extend our measure on indicator functions to simple functions, additively, and so on.

4.2 Independence

Random variables X; and X5 with values in (€, F1), (9, F2) are called independent
iff ]P)(Xl e Fi, X, e Fg) = ]P)(Xl c Fl)]P)(Xg € Fg) for all Fy € Fi, F» € Fs.

Observe:
1. If we take Q@ = Oy x Q9 and F = F; X Fop and P = P, X P, and X;(w) = w;

projections as before, then X; and X, are independent random variables with
distributions P; and P;.
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2. If X; and X, are independent random variables, defined on any background
space (€2, F), then the joint distribution of (Xi, X,) is the product measure

P, x Py, P, = Px, which is the P distribution of X;.
w— Xi(w), w — Xo(w). Look at w — (X;(w), X2(w)) as a map from Q to 5 x Q.

We check that this map is product-measurable. If A; € F; and Ay, € F5, then

{(Xl,Xg) c A1 X Ag} = (Xl € Al) N (X2 S AQ) e F.

Now Px, x,) = IP distribution of (X1, X,) makes sense.

Corollary 4.4 (Fubini) If X; and X, are independent random variables,

E[f(X1, Xs)] :/ {/f(:cl,@)Pl(dxl)] Py(dxs).

This justifies formulas for distribution of X; + X, X1X2 for real r.v.’s. Example: If
X, has density f1, X, has density fo, P(X; € A) fA (1)dx;. Then X7 + X5 has
a density

f(z) = (fix f2)(z /f1 ) fa(z — 2)dx
Check this by application of Fubini theorem.
E[g(X1 + X2)] = [ 9(2) f(2)dz

Useful fact: For real random variables, X; and X, are independent if and only if
P(X; <1, Xy <x9) =P(X; < 21)P(X3 < x9) for all real xy, xs.

Fix [} = (—oo, ] first. Consider all sets with P(X; € F, Xy, € Fy) = P(X; €
F)P(X, € F).

Extend to n variables. Xi,..., X, are independent iff

P (ﬂ(Xi S E)) =[[pxie R

i
Same discussion with product spaces. Most proofs work by induction on n, reduces

to n = 2. For example, X, X5, X3 are independent iff X; and X5 are independent
and (X1, Xs) and X3 are independent.

Intuitive properties: e.g. if Xi,..., X5 are independent, then X; + X35 + X5 and
X5 + X, are independent.

To check this, we need to check that we can factor the probabilities as above, which
goes for simple functions, and then extends.
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Proposition 4.5 If X and Y are independent and E(|X]|) < oo and E(|Y]) < oo
then E(XY) = E(X)E(Y).

Proof: Use Fubini. Be careful: we only showed Fubini for non-negative functions.

First, check in case X > 0, Y > 0. E(XY) = [} [pzyP(X € do)P(Y € dy) =
E(X)E(Y), by Fubini.

In general, X = Xt — X", Y =Y*—-Y ", and get four pieces, then put back together.
n

Note that the most general form of Fubini’s theorem gives

BUY) = [ [ f

provided this [ [ f formula is finite when f is replaced by |f].]

Recall E(X +Y) = E(X) + E(Y) always, provided they are finite. Var(X +Y) =
Var(X)+ Var(Y)+2E[(X — E(X))(Y —E(Y))] (last term is covariance), and last
term is 0 if X and Y are independent.



