
Lecture 4 : Product spaces and independence

STAT205 Lecturer: Jim Pitman Scribe: Lauren Deason <laurend@math.berkeley.edu>

4.1 Product spaces and Fubini’s Theorem

Definition 4.1 If (Ωi,Fi) are measurable spaces, i ∈ I (index set), form
∏

i Ωi. For
simplicity, Ωi = Ω1.
∏

i Ωi (write Ω for this) is the space of all maps: I → Ω1. For ω ∈
∏

i Ωi, ω = (ωi :
i ∈ I, ωi ∈ Ωi). Ω is equipped with projections, Xi : Ω → Ωi, Xi(ω) = ωi.

[picture of square, Ω1 on one side, Ω2 on other, point ω in middle, maps under
projection to each side]

Definition 4.2 A product σ-field on Ω is that generated by the projections: F =
σ ((Xi ∈ Fi) | Fi ∈ Fi).

F1 × F2 = (Ω | Ω1 ∈ F1 ∧ Ω2 ∈ F2) ∈ F = (X1 ∈ F1) ∩ (X2 ∈ F2).

We now seek to construct the product measure. We start with the n = 2 case.
(Ω,F) = (Ω1,F1) × (Ω2,F2). Suppose we have probability measures Pi on (Ωi,Fi),
i = 1, 2. Then there is a natural way to construct P = P1 ×P2 (product measure) on
(Ω,F).

Key idea: F1 ∈ F1, F2 ∈ F2, P (F1 × F2) = P1(F1) × P2(F2).

Theorem 4.3 (Existence of product measure and Fubini theorem) : (nota-
tion ω = (ω1, ω2)) There is a unique probability measure P on (Ω1,F1) × (Ω2,F2)
such that for every non-negative product-measurable [measurable w.r.t. the product
σ-field] function f : Ω1 × Ω2 → [0,∞),

∫

Ω1×Ω2

f(ω1 × ω2)P (dω) =

∫

Ω1

[
∫

Ω2

f(ω1, ω2)P2(dω2)

]

P1(dω1) =

∫

Ω2

[
∫

Ω1

f(ω1, ω2)P1(dω1)

]

P2(dω2).
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Note that this really tells very explicitly what P is:

P (A) =

∫

Ω2

1A(ω)P (dω) (∗)

Fix ω2, look at Aω2 = {ω1 | (ω1, ω2) ∈ A}.
∫

P1(Aω2)P2(dω2)

Look at the level of sets. f = 1A. Look at formula (∗). Look at the collection C of
all A ⊂ Ω1 × Ω2 such that ∗ makes sense, i.e.:

1. Aω2 ∈ F1 for every ω2 ∈ Ω2.

2. ω2 → P1(Aω1) is measurable.

Observe:

1. C contains all A1 × A2 (π-system, closed under intersection), and get P (A1 ×
A2) = P1(A1)P2(A2)

2. C is a λ-system.

Thus, C ⊃ σ(A1 × A2), which is the product of σ-fields.

(Checking λ-system uses monotone convergence theorem.)

We know that the order of integration was not relevant, because the other way gives us
a measure which agrees on rectangles (by commutativity of addition), and rectangles
generate (and we get a π-system out of them), so we can apply the π-λ-theorem.

Extend our measure on indicator functions to simple functions, additively, and so on.

4.2 Independence

Random variables X1 and X2 with values in (Ω1,F1), (Ω2,F2) are called independent
iff P(X1 ∈ F1, X2 ∈ F2) = P(X1 ∈ F1)P(X2 ∈ F2) for all F1 ∈ F1, F2 ∈ F2.

Observe:

1. If we take Ω = Ω1 × Ω2 and F = F1 × F2 and P = P1 × P2, and Xi(ω) = ωi

projections as before, then X1 and X2 are independent random variables with
distributions P1 and P2.
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2. If X1 and X2 are independent random variables, defined on any background
space (Ω,F), then the joint distribution of (X1, X2) is the product measure
P1 × P2, Pi = PXi

which is the P distribution of Xi.

ω → X1(ω), ω → X2(ω). Look at ω → (X1(ω), X2(ω)) as a map from Ω to Ω1 × Ω2.

We check that this map is product-measurable. If A1 ∈ F1 and A2 ∈ F2, then

{(X1, X2) ∈ A1 × A2} = (X1 ∈ A1) ∩ (X2 ∈ A2) ∈ F .

Now P(X1,X2) = P distribution of (X1, X2) makes sense.

Corollary 4.4 (Fubini) If X1 and X2 are independent random variables,

E [f(X1, X2)] =

∫
[
∫

f(x1, x2)P1(dx1)

]

P2(dx2).

This justifies formulas for distribution of X1 + X2, X1X2 for real r.v.’s. Example: If
X1 has density f1, X2 has density f2, P(X1 ∈ A) =

∫

A1

f(x1)dx1. Then X1 + X2 has
a density

f(z) = (f1 × f2)(z) =

∫

R

f1(x)f2(z − x)dx.

Check this by application of Fubini theorem.

E[g(X1 + X2)] =
∫

g(z)f(z)dz.

Useful fact: For real random variables, X1 and X2 are independent if and only if
P(X1 ≤ x1, X2 ≤ x2) = P(X1 ≤ x1)P(X2 ≤ x2) for all real x1, x2.

Fix F1 = (−∞, x1] first. Consider all sets with P(X1 ∈ F1, X2 ∈ F2) = P(X1 ∈
F1)P(X2 ∈ F2).

Extend to n variables. X1, . . . , Xn are independent iff

P

(

⋂

i

(Xi ∈ Fi)

)

=
∏

i

P(Xi ∈ Fi).

Same discussion with product spaces. Most proofs work by induction on n, reduces
to n = 2. For example, X1, X2, X3 are independent iff X1 and X2 are independent
and (X1, X2) and X3 are independent.

Intuitive properties: e.g. if X1, . . . , X5 are independent, then X1 + X3 + X5 and
X2 + X4 are independent.

To check this, we need to check that we can factor the probabilities as above, which
goes for simple functions, and then extends.
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Proposition 4.5 If X and Y are independent and E(|X|) < ∞ and E(|Y |) < ∞
then E(XY ) = E(X)E(Y ).

Proof: Use Fubini. Be careful: we only showed Fubini for non-negative functions.

First, check in case X ≥ 0, Y ≥ 0. E(XY ) =
∫

R

∫

R
xyP(X ∈ dx)P(Y ∈ dy) =

E(X)E(Y ), by Fubini.

In general, X = X+−X−, Y = Y +−Y −, and get four pieces, then put back together.

Note that the most general form of Fubini’s theorem gives

E(f(X, Y )) =

∫ ∫

f

provided this
∫ ∫

f formula is finite when f is replaced by |f |.]

Recall E(X + Y ) = E(X) + E(Y ) always, provided they are finite. Var(X + Y ) =
Var(X) + Var(Y ) + 2E [(X − E(X))(Y − E(Y ))] (last term is covariance), and last
term is 0 if X and Y are independent.


